# Scenario Modelling: A Holistic Environmental and Energy Management Technique for Building Managers

James O'Donnell, Vladimir Bazjanac and Marcus Keane





## **Paper Outline**

**Domain Review with Case Studies** 

Proposed Solution: Scenario Modelling

**Demonstration** 

Conclusion

**Future Work** 

## **Key Domain Weaknesses**

- Operation requires reliable information.
  - Current Solution: Organisations employ experts
- Current analysis techniques
  - Fail to account for the unique nature of buildings
  - Fail to provide a complete reference
- Absence of standards that regulate Energy Performance Practices during building operation.
  - Europe: EPBD, ESD
  - US
  - Global: ISO 50001

Motivation Research Question Proposed Solution Demonstration Conclusions Future Work

3

## **Key Domain Weaknesses**

- Manual transformation of available data
  - Subjective
  - Ad-hoc due to absence of standardised rule based data transformations and presentation formats
  - Absence of structured and standardised process, aided by appropriate tools
  - Not reproducible

## **Domain Review: Case Studies**

## **Categories**

**External Drivers** 

**Internal Drivers** 

Role

Data

Information

Tools

Techniques

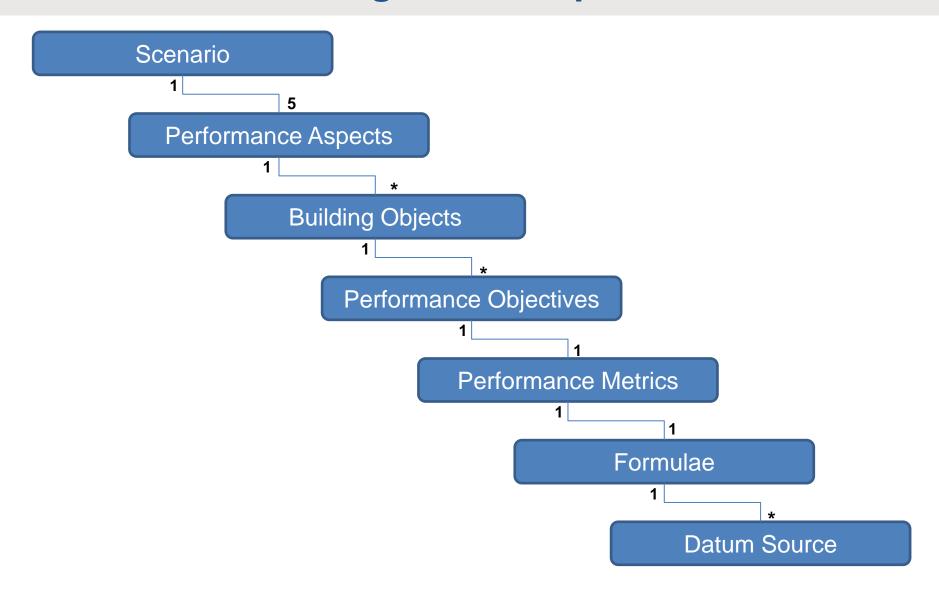
Motivation Research Question Proposed Solution Demonstration Conclusions Future Work

5

## Requirements for Holistic Analysis



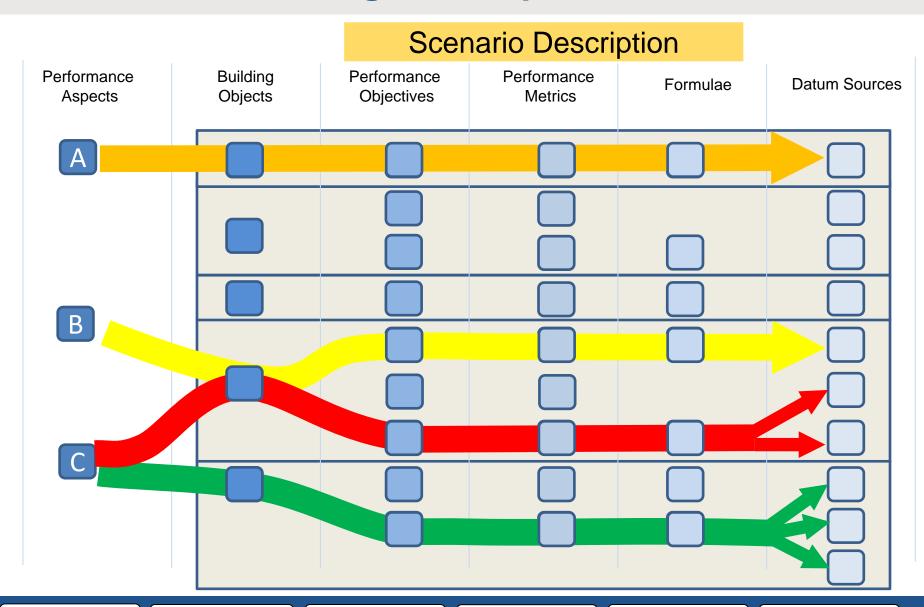
Motivation Research Question Proposed Solution Demonstration Conclusions Future Work


6

## **Research Question**

What is the optimal format for presentation of holistic building performance information to building managers?

## Scenario Modelling Technique


## Scenario Modelling: Class Representation



Motivation Research Question Proposed Solution Demonstration Conclusions Future Work

9

## **Scenario Modelling: Concept**

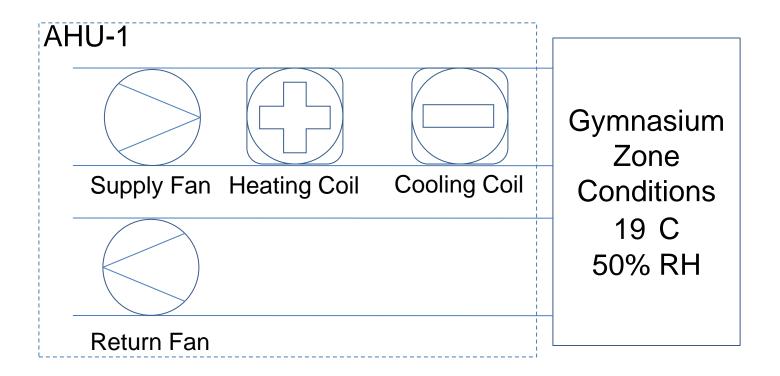


Motivation Research Question Proposed Solution Demonstration Conclusions Future Work

10

## **Scenario Modelling Structure**

## Example of Operation: Comfort V Energy Consumption


|                        | ipio di Opol        |                              |                        | ,,       |                                          |
|------------------------|---------------------|------------------------------|------------------------|----------|------------------------------------------|
| Performance<br>Aspects | Building<br>Objects | Performance<br>Objectives    | Performance<br>Metrics | Formulae | Datum Sources                            |
|                        |                     |                              |                        |          | Measured  Datum 1: Zone Temperature ( C) |
| Building<br>Function   | Gymnasium<br>Zone   | Maintain Zone<br>Temperature | Zone<br>Temperature    |          | Datum 1: Zone Temperature ( C)           |
|                        |                     |                              |                        |          | Simulated                                |
|                        |                     |                              |                        |          |                                          |
|                        |                     |                              |                        |          |                                          |

## **Scenario Modelling Structure**

#### Example of Operation: Comfort V Energy Consumption Performance Building Performance Performance **Datum Sources** Formulae Objects **Objectives** Metrics **Aspects** Measured Datum 1: Water Flow Rate (kg/s) Datum 2: Water Supply Temperature ( Datum 3: Water Return Temperature ( C Energy **Chiller Energy** Datum 1\*Constant\* **Optimise Chiller** Chiller Operation Output (Datum3-Datum2) Consumption Datum 1: Water Flow Rate (kg/s) Datum 2: Water Supply Temperature ( C) Datum 3: Water Return Temperature ( Simulated Constant Value = Specific Heat Capacity of Output Fluid measured in J/Kg K

# Demonstration

## **Example 1: Full Fresh Air System**



## **Example 1: Summary of Important Information**

| Reduction of Gymnasium Zone Temperature by 2 C |                                      |                                     |  |  |
|------------------------------------------------|--------------------------------------|-------------------------------------|--|--|
| Performance Aspects                            | Performance Aspects Building Objects |                                     |  |  |
| Building Function                              | Gymnasium Zone                       | Change in<br>Thermal Comfort        |  |  |
| Thermal Loads                                  | Gymnasium Zone                       | Change in<br>Thermal Loads          |  |  |
|                                                |                                      | Change in Electricity Consumption   |  |  |
| Energy Consumption Chiller-1                   |                                      | Change in Cost of Operation         |  |  |
| System Performance                             | AHU 1                                | Change in Supply Temperature        |  |  |
| Legislation                                    | Building                             | Change in CO <sub>2</sub> emissions |  |  |

## **Example 1: Building Function**

#### Reduction of Gymnasium Zone Temperature by 2 C Performance Building Performance Performance Fdmppatant Informationources **Aspects Objects Objectives** Metrics Measured Required Datum Streams Building Therma**Change in Maintain Thermal** Gymnasium Thermal Comfort Comfort Comfort Comfort Zone **Function** Required Datum Streams Simulated Measured Datum 1: Building Change in Maintain Zone 7one Gymnasium **Function Temperature Zone Temperature Temperature** Zone Zone Temperature (C) Simulated

## **Example 1: Thermal Loads**

## Reduction of Gymnasium Zone Temperature by 2 C

| 1100        |           | ymmasium z    | Lone rempe   | rature by Z C          |
|-------------|-----------|---------------|--------------|------------------------|
| Performance | Building  | Performance   | Performance  | Important Information  |
| Aspects     | Objects   | Objectives    | Metrics      |                        |
| Thermal     | Gymnasium | Minimise Zone | Zone Cooling | Change in Thermal Load |
| Loads       | Zone      | Cooling Load  | Load         |                        |
|             |           |               |              |                        |

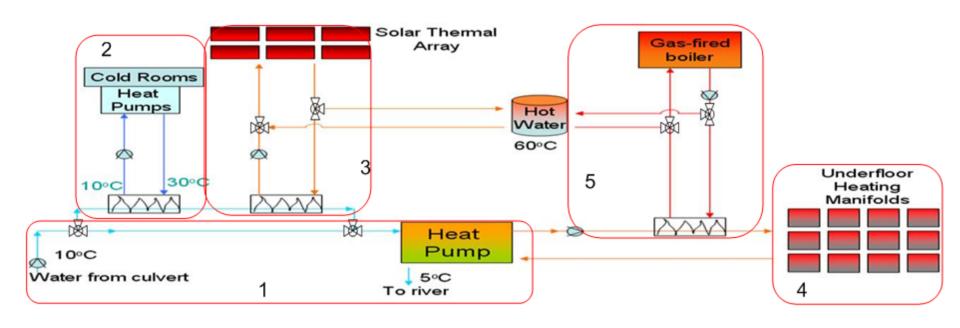
## **Example 1: Building Function**

## Reduction of Gymnasium Zone Temperature by 2 C

| Reduction of Gymnasium Zone Temperature by 2 C |                     |                                           |                                       |                                                 |
|------------------------------------------------|---------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------|
| Performance<br>Aspects                         | Building<br>Objects | Performance<br>Objectives                 | Performance<br>Metrics                | Important Information                           |
| Energy<br>Consumption                          | Chiller-1           | Minimise Chiller<br>Energy<br>Consumption | Chiller Electricity Consumption       | Change in Chiller Electricity Consumption       |
|                                                |                     |                                           |                                       |                                                 |
| Energy<br>Consumption                          | Cooling Tower -1    | Minimise Cooling<br>Tower Loads           | Cooling Tower Electricity Consumption | Change in Cooling Tower Electricity Consumption |
|                                                |                     |                                           |                                       |                                                 |
| Energy<br>Consumption                          | AHU-1               | Minimise Fans Energy Consumption          | AHU Electricity Consumption           | Change in Electricity Consumption               |
|                                                |                     |                                           |                                       |                                                 |

## **Example 1: System Performance**

## Reduction of Gymnasium Zone Temperature by 2 C


| Reduction of Cymhasidin Zone Temperature by Z. C. |                     |                                            |                        |                              |  |
|---------------------------------------------------|---------------------|--------------------------------------------|------------------------|------------------------------|--|
| Performance<br>Aspects                            | Building<br>Objects | Performance<br>Objectives                  | Performance<br>Metrics | Important Information        |  |
| System<br>Performance                             | AHU-1               | Maintain<br>Intended Supply<br>Temperature | Supply<br>Temperature  | Change in Supply Temperature |  |
|                                                   |                     |                                            |                        |                              |  |
|                                                   |                     |                                            |                        |                              |  |

## **Example 1: Legislation**

## Reduction of Gymnasium Zone Temperature by 2 C

| Reduction of Cylinasian Zone Temperature by Z.C. |                     |                                                 |                        |                         |  |
|--------------------------------------------------|---------------------|-------------------------------------------------|------------------------|-------------------------|--|
| Performance<br>Aspects                           | Building<br>Objects | Performance<br>Objectives                       | Performance<br>Metrics | Important Information   |  |
| Legislation                                      | Building            | Maintain CO2<br>emissions below<br>agreed level | CO2 emissions          | Change in CO2 emissions |  |
|                                                  |                     |                                                 |                        |                         |  |
|                                                  |                     |                                                 |                        |                         |  |

## **Example 2: Hybrid Heating and Cooling System**



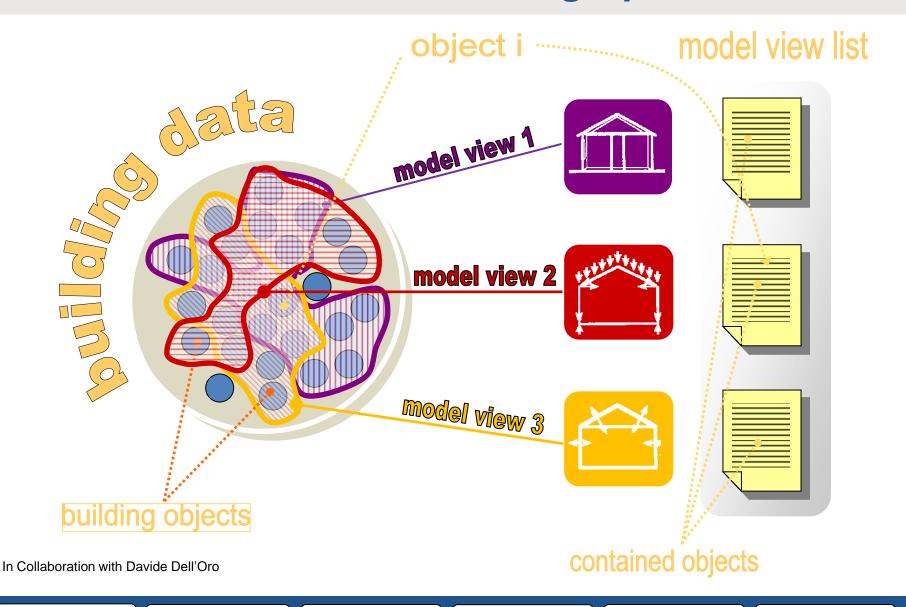
**Proposed Solution** 21 Motivation Research Question **Demonstration** Conclusions Future Work

## **Example 2: Summary**

| ERI Heating System Operation |                  |                                   |  |  |  |
|------------------------------|------------------|-----------------------------------|--|--|--|
| Performance Aspects          | Building Objects | Important Information             |  |  |  |
| Building Function            | ZG:05_Laboratory | No change in<br>Thermal Comfort   |  |  |  |
| Thermal Loads                |                  | No change in<br>Thermal Loads     |  |  |  |
|                              |                  | Change in Electricity Consumption |  |  |  |
| Energy Consumption           | Heat Pump 1      | Change in Cost of Operation       |  |  |  |
| System Performance           | Heat Pump 1      | Change in COP                     |  |  |  |
| Legislation                  | Building         | Change in CO2 emissions           |  |  |  |

## Conclusion

## **Conclusions**


- Provides a standard technique that is applicable to all buildings
  - Eliminates ad-hoc and arbitrary data manipulation
  - Meaningfully relate actual operation back to design intent
- Benefits Fiscal Managers
  - Optimises building manager's time
  - Optimises system operation
  - Reduces energy consumption
  - Saves money



## **Future Work**

- Customise technique for other project stakeholders
  - Owners
  - Fiscal Decision Makers
  - Designers
  - Commissioning Consultants
  - Other
- Develop Scenario Templates for existing buildings
- BLC Database and Environment for Scenario Models
  - Accounts for data diversity
    - Simulation model output
    - Utility tariff

## **Future Work: MVD for Building Operation**



# **Any Questions?**